
Software Modeling & Analysis

- Introduction -

정세진

http://cse.konkuk.ac.kr/

T.A.

• 이름: 정세진

• 연구실: 신공학관 1219호

• E-mail: sjjung.dslab@gmail.com

– [2019SMA]OOO~

2

http://cse.konkuk.ac.kr/

An Introduction to
Object-Oriented Development (OOD)

& Software Engineering (SE)

http://cse.konkuk.ac.kr/

Software Development

• Software Development ≈ Solving Problem with Software in Computer

4

Problems

in real world

Natural Language
→ Descriptions of Problems

(through Identifying Requirements)

Business Process

+

Solutions

in computer

Programming Language
→ Descriptions of Solutions

(through Designing Programs)

+

Program Execution
with Computer System

A Big Gap between Languages

http://cse.konkuk.ac.kr/

Software Development

• Software Development ≈ Solving Problem with Software in Computer

5

Problems

in real world

Natural Language
→ Descriptions of Problems

(through Identifying Requirements)

Solutions

in computer

Programming Language
→ Descriptions of Solutions

(through Designing Programs)

+

Program Execution
with Computer System

Software Development ≈ ①②③

Computational Thinking ≈ ①②/2

③

①

②

Procedural Programming

Object-Oriented Programming

SASD

OOAD

http://cse.konkuk.ac.kr/

Procedural Programming

• A program is organized with procedures.

– Procedure/Function

•building-block of procedural programs

• statements changing values of variables

– Focusing on data structures, algorithms, and sequencing of steps

•Algorithm : a set of instructions for solving a problem

•Data structure : a construct used to organize data in a specific way

– Most computer languages (from FORTRAN to C) are procedural ones.

6

Procedure 1: Deposit() {...}

Procedure 2: Withdraw() {...}

Procedure 3: Transfer() {...}

struct account {

char name;

int accountId;

float balance;

float interestYTD;

char accountType;

};

<<Use>>

Data StructureProcedures (with Algorithms)

http://cse.konkuk.ac.kr/

Object-Oriented Programming

• A program is organized with objects.

– Focusing on objects and their communications.

•Object : consisting of data and operations (functions)

•Object communication : an object calls an operation of other objects with its data

– Providing system functionalities through object communications

•No explicit data flow

•Only communication sequences among objects

7

Class BankAccount {

private:

float balance;

float interestYTD;

char * owner;

int account_number;

public:

void Deposit (float amount) {…}

float WithDraw (float amount) {…}

bool Transfer (BankAccount to, float amount) {…}

};

data

operation

http://cse.konkuk.ac.kr/

Object-Oriented Programming - OOAD

• OOAD (Object-Oriented Analysis and Design)

– A software development methodology for Object-Oriented programs

– OOA + OOD

• Object-Oriented Analysis (OOA)

– Discover the domain concepts/objects (the objects of the problem domain)

• Object-Oriented Design (OOD)

– Define software objects (static)

– Define how they collaborate to fulfill the requirements (dynamic)

8

http://cse.konkuk.ac.kr/

An OOAD Example - Dice Game

9

Use Case : Play a Dice Game
- Player requests to roll the dice.

- System presents results.

- If the dice’s face value totals seven,

player wins; otherwise, player loses.

Domain Model

Interaction Diagram

Design Class Diagram

OOA OOD

http://cse.konkuk.ac.kr/

Software Engineering

• Several definitions

– The application of a systematic, disciplined, quantifiable approach to development, operation and
maintenance of software [IEEE Standard 610.12]

– The disciplined application of engineering, scientific, and mathematical principles and methods to
the economical production of quality software [Watts Humphrey]

• Software Engineering is

– All activities to develop and manage software well.

– Theories, methods and tools for professional software development.

10

http://cse.konkuk.ac.kr/

Software Engineering

• Software engineering is an engineering discipline that is concerned with all aspects of
software production from the early stages of system specification through to maintaining
the system after it has gone into use

• Engineering discipline

– Using appropriate theories and methods to solve problems bearing in mind organizational and
financial constraints.

• All aspects of software production

– Not just technical process of development

– Also project management and the development of tools, methods, etc. to support software
production.

11

http://cse.konkuk.ac.kr/

Importance of Software Engineering

• A number of software projects fail due to

– Increasing system complexity

•While new software engineering techniques help us to build larger and more complex systems, the demands
change constantly.

•Systems have to be built and delivered more quickly; larger, even more complex systems are required;
systems have to have new capabilities that were previously thought to be impossible.

– Failure to use software engineering methods

• It is fairly easy to write computer programs without using software engineering methods and techniques.

•Many companies do not use software engineering methods in their everyday work. Consequently, their
software is often more expensive and less reliable than it should be.

• We need to be able to produce reliable and trustworthy systems economically and
quickly(on time).

• It is usually cheaper, in the long run, to use software engineering methods and techniques
for software systems rather than just write the programs as if it was a personal
programming project.

12

http://cse.konkuk.ac.kr/

The Software Process

• A structured set of activities required to develop a software system.

• Many different software processes, but all involve:

– Specification : defining what the system should do

– Design and implementation : defining the organization of the system and implementing the
system.

– Validation : checking that it does what the customer wants

– Evolution : changing the system in response to changing customer needs

• A software process model is an abstract representation of a process.

– Describes a process from some particular perspective.

•Activities in the process

•The ordering of these activities

13

http://cse.konkuk.ac.kr/

Software Process Models

• The waterfall model

– Plan-driven model

– Separate and distinct phases of specification and development

• Incremental development

– Specification, development and validation are interleaved.

– May be plan-driven or agile.

• Integration and configuration (Component-based Development)

– The system is assembled from existing configurable components.

– May be plan-driven or agile.

• In practice, most large systems are developed using a process that incorporates elements
from all of these models.

14

http://cse.konkuk.ac.kr/

The Waterfall Model

15

http://cse.konkuk.ac.kr/

Incremental Development

16

http://cse.konkuk.ac.kr/

Software Process Model

• Software (Development) Process models

– Defining a distinct set of activities, actions, tasks, milestones, and work products that are
required to engineer high-quality software, systematically.

– Defining Who is doing What, When to do it, How to reach a certain goal.

17

Waterfall Model

Incremental Model

Evolutionary Model

Component-Based Development

Iterative Model (Agile)

Rational Unified Process

< 1960s ~ 2000s >

Waterfall Model

Iterative Model

< 2000s ~ Now > < in practice >

Application Domains

Application Domains

…

Application Domains

Application Domains

…

tailored for

tailored for

http://cse.konkuk.ac.kr/

Iterative Model - Agile

• Agile development is an umbrella term a group of methodologies weighting rapid
prototyping and rapid development experiences.

– Lightweight in terms of documentation and process specification

– Example: XP(eXtreme Programming) , TDD(Test Driven Development)

• Agile methods attributes

– Iterative (several cycles)

– Incremental (not delivering the product at once)

– Actively involve users to establish requirements

• Agile Manifesto

– Individual over processes and tools

– Working software over documentation

– Customer collaboration over contract negotiation

– Responding to change over following a plan

18

http://cse.konkuk.ac.kr/

Iterative Model - UP

• Rational Unified Process (RUP) or UP

– A Software development approach that is

• Iterative (Incremental, Evolutionary)

– Each iteration includes a small waterfall cycle.

•Risk-driven / Client-driven / Architecture-centric

•Use-case-driven

– A Well-defined and well-structured software engineering process

•4 Phases and 9 Disciplines

– A de-facto industry standard for developing OO software

19

http://cse.konkuk.ac.kr/

Verification & Validation

• Validation testing

– To demonstrate to the developer and the system customer that the software meets its
requirements.

– A successful test shows that the system operates as intended.

• Verification (Defect) testing

– To discover faults or defects in the software where its behavior is incorrect or not in conformance
with its specification.

– A successful test is a test that makes the system perform incorrectly and so exposes a defect in
the system.

20

http://cse.konkuk.ac.kr/

21

http://cse.konkuk.ac.kr/

Stages of Testing

• Development testing

– The system is tested during development to discover bugs and defects.

•Unit testing

• Integration testing

•System testing

• Release testing

– A separate testing team test a complete version of the system before it is released to users.

• User testing

– Users or potential users of a system test the system in their own environment.

22

http://cse.konkuk.ac.kr/

Development Testing

• All testing activities that are carried out by the team developing the system.

– Unit testing

• Individual program units or object classes are tested.

•Unit testing should focus on testing the functionality of objects or methods.

– Component testing (= Integrated testing)

•Several individual units are integrated to create composite components.

•Component testing should focus on testing component interfaces.

– System testing

•Some or all of the components in a system are integrated and the system is tested as a whole.

•System testing should focus on testing component interactions.

23

http://cse.konkuk.ac.kr/

Software Change

• Software change is inevitable.

– New requirements emerge when the software is used.

– The business environment changes.

– Errors must be repaired.

– New computers and equipment is added to the system.

– The performance or reliability of the system may have to be improved.

• A key problem for all organizations is to implement and manage the change to their
existing software systems.

• Evolutionary Development (incremental, iterative model) is needed

– And traceability analysis

24

http://cse.konkuk.ac.kr/

Contents in Detail

25

대주제 차시 소주제 학습 목표 상세 내용

1.

An Introduction

to Object-

Oriented

Development

1 2
Object-Oriented

Development

• ‘소프트웨어 개발’을 정의할 수 있다.

• OOAD 와 SASD의 차이점을 구분할 수 있다.

• 다양한 소프트웨어 개발 방법론/프로세스를
구분하고 정리할 수 있다.

• OOAD vs. SASD

• Software Development Process

3 Object-Oriented • 객체지향 (Object-Oriented)을 정의할 수 있다. • Object-Oriented

4
Object-Oriented

Principles
• 객체지향 Principles을 이해하고 적용할 수 있다. • Object-Oriented Principles

5 6 UML
• UML 2.0을 구성하는 13개 다이어그램들의

목적을 이해할 수 있다.
• 13 UML Diagrams

http://cse.konkuk.ac.kr/

Contents in Detail

26

대주제 차시 소주제 학습 목표 상세 내용

2.

Object-

Oriented

Analysis and

Design

7 Part I. Introduction
• OOAD 및 UP 기본개념을 정리할 수 있다.

• 교재의 Case Study 내용을 확인할 수 있다.

• Chapter 1. Object-Oriented Analysis and

Design

• Chapter 2. Iterative, Evolutionary, and Agile

• Chapter 3. Case Studies

8 9 Part II. Inception

• UP 기반 OOAD의 첫 단계인 Inception 단계를
이해할 수 있다.

• Inception 단계의 활동을 수행할 수 있다.

• 기능/비기능 요구사항을 구별할 수 있다.

• Use Case를 활용할 수 있다.

• Chapter 4. Inception is Not the Requirements

Phase

• Chapter 5. Evolutionary Requirements

• Chapter 6. Use Cases

• Chapter 7. Other Requirements

10

Part III. Elaboration

Iteration 1 – Basics

- OOA

• Analysis 단계의 활동을 이해할 수 있다.

• Domain model의 목적을 이해하고 활용할 수 있
다.

• Chapter 8. Iteration 1 Basics

• Chapter 9. Domain Models

11 - OOA
• Sequence diagram의 목적을 이해하고 활용할

수 있다.

• Operation contract의 목적을 이해할 수 있다.

• Chapter 10. System Sequence Diagram

• Chapter 11. Operation Contracts

12 - OOD
• Design 단계의 활동을 이해할 수 있다.

• Package diagram의 목적을 이해하고 활용할 수
있다.

• Chapter 12. Requirements to Design Iteratively

• Chapter 13. Logical Architecture and UML

Package Diagrams

13

14
- OOD

• Sequence diagram의 목적을 이해하고 활용할
수 있다.

• Chapter 14. On to Object Design

• Chapter 15. UML Interaction Diagram

15

16
- OOD

• Class diagram의 목적을 이해하고 활용할 수
있다.

• Chapter 16. UML Class Diagram

17 - OOD
• GRASP 디자인 패턴의 목적과 효과적인 적용

방법을 이해할 수 있다.

• Chapter 17. GRASP: Designing Objects with

Responsibilities

18

19
- OOI

• OO Design에서 Implementation으로의
전환과정을 정확하게 이해할 수 있다.

• 개발방법론의 장점을 확인할 수 있다.

• Chapter 19. Designing for Visibility

• Chapter 20. Mapping Designs to Code

http://cse.konkuk.ac.kr/

Contents in Detail

27

대주제 차시 소주제 학습 목표 상세 내용

3.

Advanced

Topics in UML

20

21
Statechart Diagram

• Statechart의 문법을 정확하게 이해하고, 이를
활용하여 모델링을 수행할 수 있다.

• Statechart Diagram

22 Component Diagram
• Component Diagram을 이해하고 활용할 수

있다.
• Component Diagram

23
Extension Mechanism

of UML

• UML을 적절하게 확장하는 방법을 이해할 수
있다.

• MOF의 개념을 이해할 수 있다.

• Extension Mechanism of UML

대주제 차시 소주제 학습 목표 상세 내용

4.

Summary
24 OOAD Summary

• UML을 적절하게 사용하여, UP 기반의 OOAD

를 수행할 수 있는 이론적인 배경을 갖춘다.
• OOAD Summary

http://cse.konkuk.ac.kr/

Team Activity
OOPT - A New OOO Digital Watch

http://cse.konkuk.ac.kr/

Team Project with OOPT

• A software development process based on RUP

• Tailored to software engineering classes in universities

• A revision of OSP (Object Space Process)

• Have been practiced and refined for 10 years

29

http://cse.konkuk.ac.kr/

A New OOO Digital Watch

• Supposed to develop a new OOO digital watch

• Let’s analyze and design your own new OOO digital watch.

– OOAD development method : OOPT

– Use a UML tool

•Not use Statechart, Communication, Activity, Package, Deployment Diagrams, for now.

– Basic Requirements & Assumption :

•A set of predefined/fixed hardware (1 LCD, 4 buttons, 1 buzzer, 1 SW Controller)

•Dynamic SW Configuration (4 among 6 functions)

– Time keeping, Timer, Stopwatch, Alarm (+2 function)

•4 alarms

– Instructions

•Take care of the layered architecture of your system under development.

•Take care of your system context – embedded system!

•Make every assumptions clear, feasible and consistent.

• Team activities:

1. Stage 1000 : Plan

2. Stage 2000 > 2030 : Analyze

3. Stage 2000 > 2040 : Design

4. Stage 2000 > 2050 : Implementation

30

http://cse.konkuk.ac.kr/

A New OOO Digital Watch

• Supposed to develop a new OOO digital watch

• Let’s analyze and design your own new OOO digital watch.

– OOAD development method : OOPT

– Use a UML tool

•Not use Statechart, Communication, Activity, Package, Deployment Diagrams, for now.

– Basic Requirements & Assumption :

•A set of predefined/fixed hardware (1 LCD, 4 buttons, 1 buzzer, 1 SW Controller)

•Dynamic SW Configuration (4 among 6 functions)

•4 alarms

– Instructions

•Take care of the layered architecture of your system under development.

•Take care of your system context – embedded system!

•Make every assumptions clear, feasible and consistent.

• Team activities:

1. Stage 1000 : Plan

2. Stage 2000 > 2030 : Analyze

3. Stage 2000 > 2040 : Design

4. Stage 2000 > 2050 : Implementation

31

http://cse.konkuk.ac.kr/

Team Project

• 메일로 팀 구성해서 보내 주세요 (학번, 이름)

– 4인 1팀

32

http://cse.konkuk.ac.kr/

